
Programmable Storage
Carlos Maltzahn, UC Santa Cruz

10/6/2020
Snowmass Community Planning Meeting

Opportunities for computing R&D to advance particle physics



Carlos Maltzahn

people.ucsc.edu/carlosm



Computational Storage: History
§ Idea dates back to mainframes

§ First Channel I/O processors in IBM 709, 1957

§ Network Attached Secure Disks (NASD)
§ Research project at CMU, 1997-2001

§ Encryption, compression, data management (“active storage”)
§ SCSI T10 Object Storage Device (OSD) v1 and v2 standards

§ Only offloads part of file system functionality

§ Ceph
§ Research project at UC Santa Cruz, 2005-2007
§ Designed for OSDs
§ Broke OSD standard with P2P communication for failure management
§ Implemented for hosts, not devices

§ SkyhookDM Plugin for Ceph 
§ CROSS incubator project at UC Santa Cruz since 2016
§ Offloads data management of tabular data
§ Turns Ceph into an Apache Arrow-native store (since 2020)

§ Computational Storage
§ SNIA Technical Working Group (TWG) since 2019
§ Focus on storage devices

§ Eusocial Storage Devices 
§ CROSS research project at UC Santa Cruz since 2017
§ P2P communication, specialization into “castes”
§ I/O stack flexible about offloading: pushdown, pushback
§ Leverages Smart NICs



Computational Storage: Why now?

§ Storage devices are getting very fast
§ CPU/DRAM/PCIe cannot keep up
§ CPU/DRAM/PCIe tax for storage 

increases
§ Disaggregation in data centers

§ Multi-tenant workloads are too diverse 
for any kind of packaging

§ Better to dynamically assemble systems 
from parts

§ Storage fabrics are expensive
§ NVMe requires host kernel resources
§ Ethernet is much cheaper and keeps 

getting faster
§ New IP protocols are getting very fast: 

e.g. HTTP/3



Programmable Storage
A programmable storage system or device exposes internal subsystem 

abstractions as “interfaces” to enable the creation of higher-level 
services via composition.

Collaborators: Jeff LeFevre (UCSC), Ivo Jimenez (UCSC), Esmaeil Mirvakili (UCSC), Jayjeet 
Chakraborty (NIT), Aditi Gupta (NIT), Aaron Chu (UCSC), Xiongfeng Song (Rice)



Programmable Storage
Computational Storage + Programmability

For storage systems:
• Storage has to be correct, otherwise data loss
• Correct software takes time 
• Reuse as much as possible à Composability
• Composability important for optimization

For storage devices:
• Storage device industry has very low margins
• Products must fit existing market and have a 

minimum life time
• Programmable devices to reduce market risk
• Greater opportunity for innovation



tree -d
ceph/src

What is SkyhookDM?

SkyhookDM

An object “class” for Ceph
• No upstream modifications required
• Inherits Ceph’s properties now and 

in the future
• Can use all other object extensions
• Not a database

Storing tabular data in objects
• Using

Object read/write operations
• Select, Project, Aggregate
• Create, append rows/columns
• Indexing
• Intra- & inter-object transformations

Growth of mainline
object classes
2010-2018



• Client maps tables to sets of objects
• Map is also stored in objects

• Client API designed for plugins
• Allows pushdown to scale out tabular data 

operations
• Reduces data movement (CPU cycles!)

• IRIS-HEP
• Connting to Coffea and ServiceX

• CROSS
• Plugins for Postgres, Spark, Pandas, HDF5

SkyhookDM Client

…SkyhookDM 
Client

ServiceX

ServiceX
Plugin

librados

SkyhookDM 
Client

Foreign Data 
Wrapper

Postgres

librados

SkyhookDM 
Client

ServiceX

ServiceX
Plugin

librados

SkyhookDM 
Client

ServiceX

ServiceX
Plugin

librados

SkyhookDM 
Client

Foreign Data 
Wrapper

Postgres

librados

SkyhookDM 
Client

Coffea 
Processor

Coffea

librados



How does SkyhookDM fit into DOMA?
ServiceX Plugin and Coffea Processor:

ServiceX creates one table per transformation request
• Partitions table and assigns transformer to each partition
• Each transformer creates and writes an object row-by-row
• ServiceX provides table metadata, incl. partitioning to SkyhookDM

Table names are arbitrary strings, globally unique
• Column names are arbitrary strings, unique within table
• Rows have a key, unique within table

Coffea Processor:
SkyhookDM can create views across arbitrary sets of tables

• View names are arbitrary strings, globally unique
• Views can be either by reference or by copy (i.e. materialized)
• SkyhookDM stitches views on a best-effort basis
• Key mappers can map one kind of key to another and can be stored

Design allows evolution of higher-level automation.
• Table naming conventions might indicate compatibility to other tables
• View naming conventions might allow automatic reuse of materialized 

views
• Column naming conventions might allow versioning
• Naming convention might allow automatic garbage collection

SkyhookDM 
Client

ServiceX
Plugin

librados

SkyhookDM 
Client

ServiceX
Plugin

librados

SkyhookDM 
Client

Arrow
Dataset API

librados

Transformer
Transformer

Processor

ServiceXCoffea


